Micro-mechanism of Damage Evolution in Commercially Pure Titanium: An In-situ Study

Vivek Kumar Sahu*, N. P. Gurao Email ID: vsahu@iitk.ac.in

Department of Materials Science and Engineering ,IIT Kanpur, Kanpur-208016

EP-06

Introduction

- Ti and Ti alloys have high specific strength, room temperature ductility, fracture toughness
- Excellent corrosion resistance and biocompatibility
- Application → Aerospace, biomedical and transportation

Deformation of titanium

> Five independent slip/twinning \rightarrow compatible deformation according to von-Mises criterion

- $\{0002\} < 11\overline{2}0 > basal$
- $\{10\overline{1}0\} < 11\overline{2}0 > \text{prismatic}$
- $\{10\overline{1}1\} < 11\overline{2}0 > pyramidal$
- $\{10\overline{1}1\} < 11\overline{2}\overline{3} > \text{pyramidal} \text{I}$
- $\{11\overline{2}2\} < 11\overline{2}\overline{3} > pyramidal II$

Mode	K ₁ Plane	η₁ Direction	Misorientatio n (degree at axis)	Twin Shear
ET1	{1012}	< 1011 >	85 ⁰ < 11 ² 0 >	0.171
ET2	{1121}	< 11276 >	$35^0 < \bar{1}100 >$	0.629
CT1	{1122}	< 1123 >	65 ⁰ < 1100 >	0.221

Ref: J W Christian and S Mahajan, Prog. Mater. Sci. (1995)

Motivation

Void nucleation, growth and coalescence in ductile metal occurs by prosses of plastic deformation
Micro-mechanism of ductile damage with crystallographic orientation

Methodology

Deformed at cross head velocity of 0.2mm/min

Intra-granular misorientation analysis (IGMA)

Slip system	Number of slip variants	Taylor axis	Number of variant of the Taylor axis
$\{10\overline{1}0\} < 1\overline{2}10 >$	3	< 0001 >	1
{0002} < 1 <u>2</u> 10 >	3	< 1100 >	3
$\{10\overline{1}1\} < 1\overline{2}10 >$	6	< 1012 >	6
{0111} < 1123 >	12	< 13 8 5 3 >	12
$\{11\overline{2}2\} < \overline{1}\overline{1}23 >$	6	< 1100 >	3

Ref: Y.B. Chun et al., Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41 (2010) 3473–3487. https://doi.org/10.1007/s11661-010-0410-4.

Hard grain

Soft grain

- ➢ Growth → High energy grain boundary, extension type I twin, prismatic and pyramidal type dislocations

<u>Acknowledgement</u>

Dr. Manasij Yadava, Advanced Centre for Material Science facility